Axon guidance in the inner ear.
نویسندگان
چکیده
Statoacoustic ganglion (SAG) neurons send their peripheral processes to navigate into the inner ear sensory organs where they will ultimately become post-synaptic to mature hair cells. During early ear development, neuroblasts delaminate from a restricted region of the ventral otocyst and migrate to form the SAG. The pathfinding mechanisms employed by the processes of SAG neurons as they search for their targets in the periphery are the topic of this review. Multiple lines of evidence exist to support the hypothesis that a combination of cues are working to guide otic axons to their target sensory organs. Some pioneer neurites may retrace their neuronal migratory pathway back to the periphery, yet additional guidance mechanisms likely complement this process. The presence of chemoattractants in the ear is supported by in vitro data showing that the otic epithelium exerts both trophic and tropic effects on the statoacoustic ganglion. The innervation of ectopic hair cells, generated after gene misexpression experiments, is further evidence for chemoattractant involvement in the pathfinding of SAG axons. While the source(s) of chemoattractants in the ear remains unknown, candidate molecules, including neurotrophins, appear to attract otic axons during specific time points in their development. Data also suggest that classical axon repellents such as Semaphorins, Eph/ephrins and Slit/Robos may be involved in the pathfinding of otic axons. Morphogens have recently been implicated in guiding axonal trajectories in many other systems and therefore a role for these molecules in otic axon guidance must also be explored.
منابع مشابه
Analysis of Netrin 1 receptors during inner ear development.
Netrin 1 plays key roles in axon guidance and neuronal migration during central nervous system (CNS) development. Outside the CNS, Netrin 1 has been shown to be involved in epithelial morphogenesis of various organs. We have shown that Netrin 1 is essential for inner ear semicircular duct formation, but the involvement of Netrin 1 receptors in this process has remained unknown. Netrin 1 recepto...
متن کاملPatterns of Gene Expression Associated with Pten Deficiency in the Developing Inner Ear
In inner ear development, phosphatase and tensin homolog (PTEN) is necessary for neuronal maintenance, such as neuronal survival and accurate nerve innervations of hair cells. We previously reported that Pten conditional knockout (cKO) mice exhibited disorganized fasciculus with neuronal apoptosis in spiral ganglion neurons (SGNs). To better understand the genes and signaling networks related t...
متن کاملNT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea.
Survival of inner ear sensory neurons depends on two neurotrophins, BDNF and NT-3, and their respective receptors, TrkB and TrkC. Because both receptors are present in the same neuron, it has been suggested that BDNF and NT-3 are functionally redundant in promoting neuronal survival. Knock-in of one ligand into the locus of the other one confirmed this hypothesis for the cochlea, leaving open t...
متن کاملExperimental Visualization of Labyrinthine Structure with Optical Coherence Tomography
Introduction:Visualization of inner ear structures is a valuable strategy for researchers and clinicians working on hearing pathologies. Optical coherence tomography (OCT) is a high-resolution imaging technology which may be used for the visualization of tissues. In this experimental study we aimed to evaluate inner ear anatomy in well-prepared human labyrinthine bones.Materials and Methods:Thr...
متن کاملBrn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons.
The POU domain transcription factors Brn3a, Brn3b and Brn3c are required for the proper development of sensory ganglia, retinal ganglion cells, and inner ear hair cells, respectively. We have investigated the roles of Brn3a in neuronal differentiation and target innervation in the facial-stato-acoustic ganglion. We show that absence of Brn3a results in a substantial reduction in neuronal size, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The International journal of developmental biology
دوره 51 6-7 شماره
صفحات -
تاریخ انتشار 2007